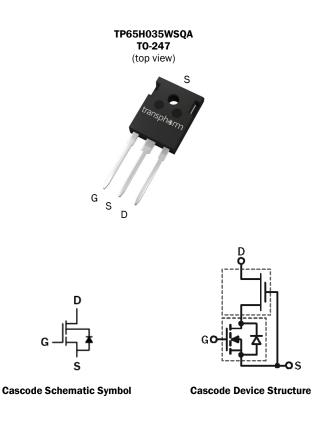
transphorm

TP65H035WSQA

650V Cascode GaN FET in TO-247 (source tab)

Description

The TP65H035WSQA 650V, $35m\Omega$ gallium nitride (GaN) FET is a normally-off automotive (AEC-Q101) qualified device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.


Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing
- AN0010: Paralleling GaN FETs

Ordering Information

Part Nu	mber	Package	Package Configuration
TP65H035WSQA 3		3 lead TO-247	Source

Features

- JEDEC-qualified GaN technology
- Junction temperature rating of 175C
- Dynamic R_{DS(on)} production tested
- Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Achieves increased efficiency in both hard- and softswitched circuits
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Automotive
- Datacom
- Broad industrial
- PV inverter

Key Specifications

V _{DS} (V)	650			
V _{(TR)DSS} (V) max	800			
$R_{DS(on)}(m\Omega)$ max*	41			
Q _{RR} (nC) typ	178			
Q _G (nC) typ	24			
* Dynamia Base 4 and Figures 17 and 19				

* Dynamic $R_{DS(on)}$; see Figures 17 and 18

Common Topology Power Recommendations

CCM bridgeless totem-pole**	3980W max		
Hard-switched inverter***	4690W max		

Conditions: F_{SW} =45kHz; TJ=115°C; T_{HEATSINK}=90°C; insulator between device and heatsink (6 mil Sil-Pad® K-10); power de-rates at lower voltages with constant current

** VIN=230VAC: VOUT=390VDC

*** VIN=380VDC; VOUT=240VAC

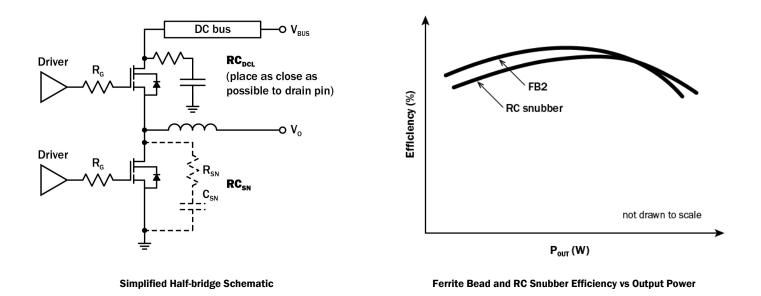
Absolute Maximum Ratings (Tc=25°C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
V _{DSS}	Drain to source voltage $(T_J = -$	55°C to 150°C)	650	
V _{(TR)DSS}	Transient drain to source volta	age ^a	800	V
V _{GSS}	Gate to source voltage		±20	
PD	Maximum power dissipation @	⊉Tc=25°C	187	W
	Continuous drain current @Tc=25°C b		47.2	А
I _D	Continuous drain current @Tc	=100°C b	33.4	А
I _{DM}	Pulsed drain current (pulse width: 10µs)		240	А
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive °		1800	A/µs
(di/dt) _{RDMT}	Reverse diode di/dt, transient	Reverse diode di/dt, transient d		A/µs
Tc	On a rating to man a ratura	Case	-55 to +175	°C
۲J	 Operating temperature 	Junction	-55 to +175	°C
Ts	Storage temperature		-55 to +175	°C
T _{SOLD}	Soldering peak temperature ^e		260	°C
-	Mounting Torque		80	N cm

Notes:

a. In off-state, spike duty cycle D<0.01, spike duration <1µs
b. For increased stability at high current operation, see Circuit Implementation on page 3

Continuous switching operation c.


≤300 pulses per second for a total duration ≤20 minutes d.

For 10 sec., 1.6mm from the case e.

Thermal Resistance

Symbol	Parameter	Maximum	Unit
R _{0JC}	Junction-to-case	0.8	°C/W
R _{OJA}	Junction-to-ambient	40	°C/W

Circuit Implementation

Recommended gate drive: (0V, 12V) with R_{G} = 30Ω

	Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC _{SN}) $^{\rm b,c}$
	[10nF + 8Ω] x 2	200pF + 5Ω
_	Notor	

Notes:

a. RC_{DCL} should be placed as close as possible to the drain pin

b. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of IRDMC1 or IRDMC2; see page 5 for IRDMC1 and IRDMC2)

c. I_{RDM} values can be increased by increasing R_{G} and C_{SN}

Electrical Parameters (T_J=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward D	evice Characteristics	I	1	1	1		
$V_{(BL)DSS}$	Drain-source voltage	650	-	-	V	V _{GS} =0V	
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	3.4	4	4.5	V		
$\Delta V_{GS(th)}/T_J$	Gate threshold voltage temperature coefficient	_	-6.5	-	mV/°C	V _{DS} =V _{GS} , I _D =1mA	
R _{DS(on)eff}	Drain-source on-resistance a	_	35	41	mΩ	V _{GS} =10V, I _D =32A	
NDS(on)eff		_	84	-	11152	V _{GS} =10V, I _D =32A, T _J =175°C	
I _{DSS}	Drain to source leakage current	_	2	25	μA	V _{DS} =650V, V _{GS} =0V	
IDSS	Drain-to-source leakage current	_	30	-	μΛ	V _{DS} =650V, V _{GS} =0V, T _J =175°C	
	Gate-to-source forward leakage current	_	-	400		V _{GS} =20V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-400	nA	V _{GS} =-20V	
CISS	Input capacitance	_	1500	-		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	196	-	pF		
C _{RSS}	Reverse transfer capacitance	_	10	-	-		
C _{O(er)}	Output capacitance, energy related ^b	_	290	-	pF	V_{GS} =0V, V_{DS} =0V to 400V	
$C_{O(tr)}$	Output capacitance, time related °	_	445	-	рг		
Q_{G}	Total gate charge	_	24	-			
Q _{GS}	Gate-source charge	_	9	-	nC	V_{DS} =400V, V_{GS} =0V to 10V, I_D =32A	
\mathbf{Q}_{GD}	Gate-drain charge	_	5	-	-		
Qoss	Output charge	_	178	-	nC	V_{GS} =0V, V_{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	69	-			
t _R	Rise time	_	14	-	ne	V_{DS} =400V, V_{GS} =0V to 12V,	
$t_{D(off)}$	Turn-off delay	_	98	-	ns	I_{D} =32A, R_{G} = 30 Ω	
t _F	Fall time	_	12	_	1		

Notes:

a. Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions

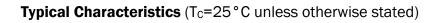
b. Equivalent capacitance to give same stored energy as V_{DS} rises from 0V to 400V

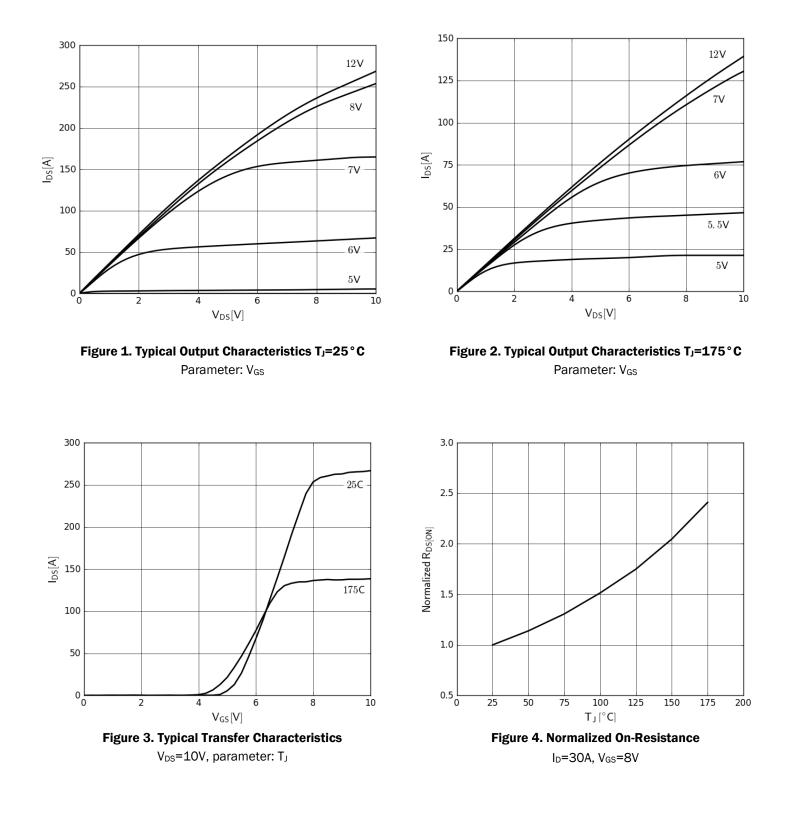
c. Equivalent capacitance to give same charging time as V_{DS} rises from OV to 400V

Electrical Parameters (T_=25°C unless otherwise stated)

Symbol	Parameter		Тур	Max	Unit	Test Conditions	
Reverse Dev	ice Characteristics	-	•				
ls	Reverse current	_	-	30.9	A	V _{GS} =0V, T _C =100°C ≤20% duty cycle	
V _{SD}	Povoroo voltago a	_	1.8	-	v	V_{GS} =0V, I_{S} =32A	
VSD	Reverse voltage ^a	_	1.3	-		V _{GS} =0V, I _S =16A	
t _{RR}	Reverse recovery time	_	65	-	ns	I _S =32A, V _{DD} =400V,	
Q _{RR}	Reverse recovery charge	_	178	_	nC	di/dt=1000A/µs	
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive b	_	_	1800	A/µs		
I _{RDMC1}	Reverse diode switching current, repeti- tive (dc) ^{c, e}	_	_	28	A	Circuit implementation and parameters on page 3	
I _{RDMC2}	Reverse diode switching current, repeti- tive (ac) ^{c, e}		_	35	A	Circuit implementation and parameters on page 3	
(di/dt) _{RDMT}	Reverse diode di/dt, transient d	_	_	3800	A/µs		
I _{RDMT}	Reverse diode switching current, transient ^{d,e}	_	_	45	A	Circuit implementation and parameters on page 3	

Notes:


a. Includes dynamic R_{DS(on)} effect


b. Continuous switching operation

c. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency

d. \leq 300 pulses per second for a total duration \leq 20 minutes

e. $\ensuremath{\mathsf{I}_{\mathsf{RDM}}}$ values can be increased by increasing R_G and C_{SN} on page 3

Typical Characteristics (Tc=25 $^{\circ}$ C unless otherwise stated)

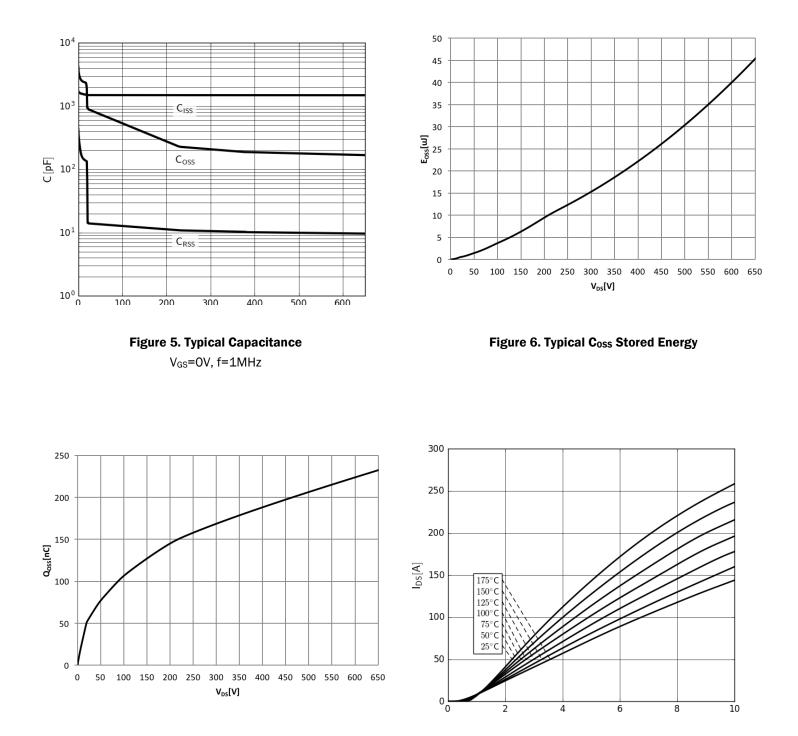
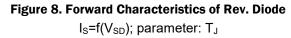
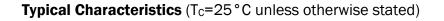




Figure 7. Typical Qoss

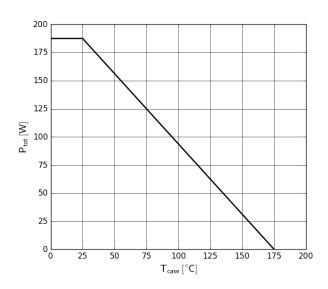
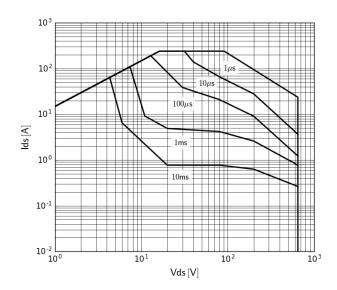



Figure 9. Power Dissipation

140 120 $\mathsf{D}\!=\!10\%$ 100 Peak I_D [A] 80 D = 20%60 $\mathsf{D} = 50\%$ 40 DC 20 0 L 25 50 75 100 125 150 175 200 $\mathsf{T}_{\mathsf{case}}\left[^{\circ}\mathsf{C}\right]$

Figure 10. Current Derating Pulse width $\leq 10 \mu s$, V_{GS} $\geq 10 V$

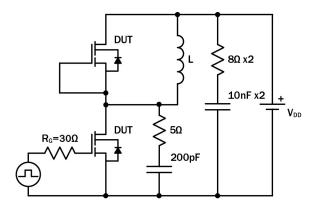

 $M_{0}^{\text{fr}} = \frac{10^{-1}}{10^{-2}} + \frac{10^{-1}}{10^{-1}} + \frac{10$

Figure 12. Transient Thermal Resistance

10⁰

Test Circuits and Waveforms

Figure 13. Switching Time Test Circuit (see Circuit Implementation on page 3 for methods to ensure clean switching)

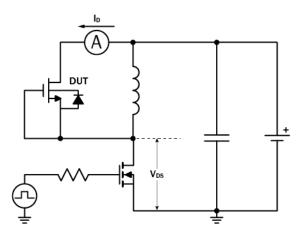


Figure 15. Diode Characteristics Test Circuit

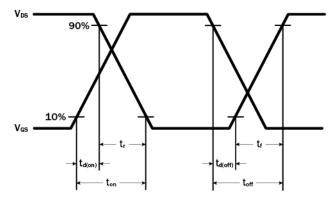
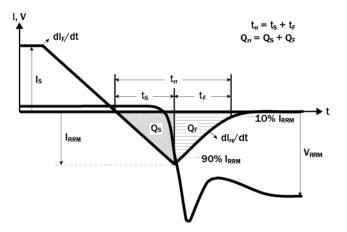
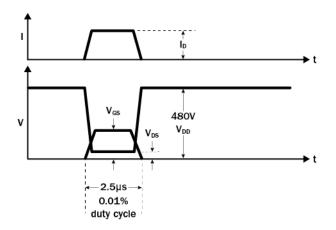




Figure 14. Switching Time Waveform

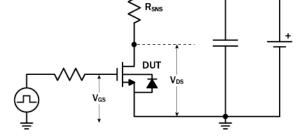


Figure 17. Dynamic R_{DS(on)} Test Circuit

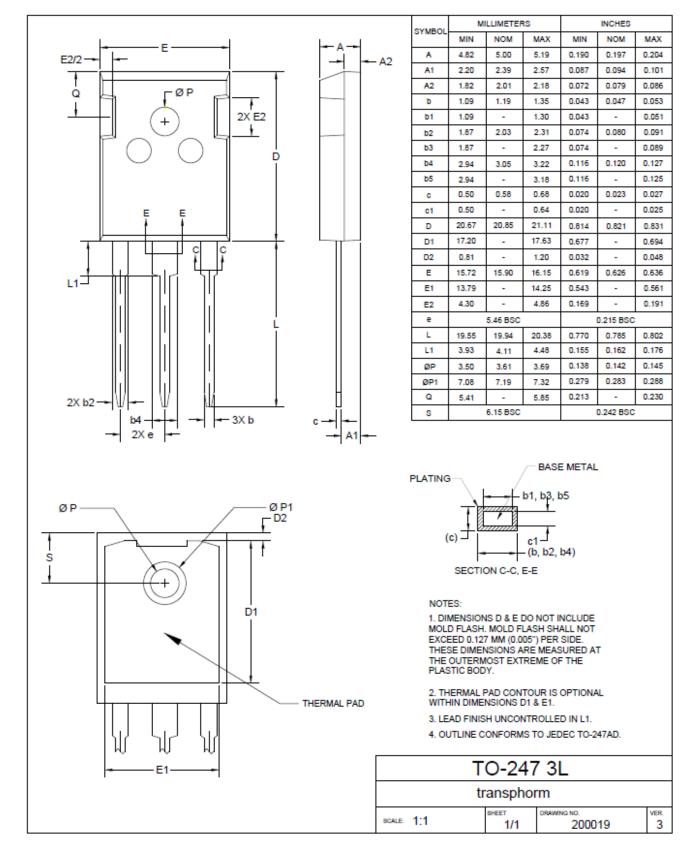
Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	


GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-247 Package

Revision History

Version	Date	Change(s)	
0	9/18/2017	Create preliminary datasheet	
1	2/1/2019	Datasheet completed	